Tags: ,

The radio module NRF24L01 is a transceiver for establishing a connection and transferring data from one device to another via radio waves.


  • Computer
  • Arduino UNO x2
  • USB cable A Male to B Male
  • NRF24L01 x2

Principle of operation

The nRF24l01 module is a low-power transceiver that enables wireless data exchange over the 2.4GHz radio frequency band. It allows efficient communication between two devices over a medium distance (50m) when they are in direct view, i.e. without obstacles. If you wish to communicate over longer distances outdoors, an RF433 or LoRa module should be preferred. Indoors, if one or more walls are present between the transmitter and the receiver, it is preferable to use WiFi or Bluetooth communication.


The nRF24L01 module uses the SPI protocol to communicate with the microcontroller and must be powered between 1.9 and 3.6V. SPI communication uses specific boxes and is pinned as follows (left side NRF24L01, right side Arduino UNO):

  • Vcc (Power) <-> 3V3
  • CE (Reset) <-> 2
  • GND (ground) <-> GND
  • MOSI (Master Output Slave Input) <-> 11
  • MISO (Master Input Slave Output) <-> 12
  • SCK (Serial Clock) <-> 13
  • CS (chip select) <-> 4

To improve the range and stability of the connection, it is advisable to solder a capacitor between the Vcc and GND pins on some modules.


To manage the NRF24L01 module we use the RF24.h, nRF24L01.h and SPI.h libraries. In the following code, which works for the master (role=0) and the slave (role=1), we define a node for each module, one that will send data and the other that will receive it.

#include <RF24.h>//https://github.com/nRF24/RF24
#include <nRF24L01.h>//https://github.com/nRF24/RF24/blob/master/nRF24L01.h
#include <SPI.h>//https://www.arduino.cc/en/reference/SPI
byte addresses[2] [6] = {"Node1", "Node2"};
bool radioNumber  = 0;
bool role  = 0;
int masterStatus  = 0;
byte cmd  = 0;
int slaveStatus  = 0;
unsigned long myData  = 0;
RF24 radio(2, 8);
void setup() {
 //Init Serial USB
 Serial.println(F("Initialize System"));
 //Init radio rf24
 radio.setPALevel(RF24_PA_LOW); // Set the PA Level low to prevent power supply related issues. RF24_PA_MAX is default.
 //radio.setAutoAck(1);                    // Ensure autoACK is enabled
 //radio.enableAckPayload();               // Allow optional ack payloads
 //radio.setRetries(2,15);                 // Smallest time between retries, max no. of retries
 //radio.setCRCLength(RF24_CRC_8);          // Use 8-bit CRC for performance
 //radio.setPayloadSize(16);                // Here we are sending 1-byte payloads to test the call-response speed
 //radio.printDetails();                   // Dump the configuration of the rf unit for debugging. Not working on nano
 // Open a writing and reading pipe on each radio, with opposite addresses
 if (radioNumber) {
   radio.openReadingPipe(1, addresses[0]);
 } else {
   radio.openReadingPipe(1, addresses[1]);
 myData = 1.22;
 // Start the radio listening for data
void loop() {
void testRF24( ) { /* function testRF24 */
 ////Test RF24communication change radioNumber and radio to 0(receiver) or 1(transmitter)
 if (role == 1) {
 } else {
void masterRole( ) { /* function masterRole */
 ////emit data
 radio.stopListening();                                    // First, stop listening so we can talk.
 Serial.println(F("Now sending"));
 myData = micros();
 if (!radio.write( &myData, sizeof(myData) )) {
 //Serial.print("width :  ");Serial.println(radio.R_RX_PL_WID );
 radio.startListening();                                    // Now, continue listening
 unsigned long started_waiting_at = micros();               // Set up a timeout period, get the current microseconds
 boolean timeout = false;                                   // Set up a variable to indicate if a response was received or not
 while ( ! radio.available() ) {                            // While nothing is received
   if (micros() - started_waiting_at > 200000 ) {           // If waited longer than 200ms, indicate timeout and exit while loop
     timeout = true;
 if ( timeout ) {                                            // Describe the results
   Serial.println(F("Failed, response timed out."));
 } else {
   // Grab the response, compare, and send to debugging spew
   radio.read( &myData, sizeof(myData) );
   myData = micros();
   // Spew it
   Serial.print(F("Sent "));
   Serial.print(F(", Got response "));
 // Try again 1s later
void slaveRole( ) { /* function slaveRole */
 ////recieve data
 if ( radio.available()) {
   // Variable for the received timestamp
   while (radio.available()) {                          // While there is data ready
     radio.read( &myData, sizeof(myData) );             // Get the payload
   radio.stopListening();                               // First, stop listening so we can talk
   Serial.print(F("Transmission "));
   //myData.value += 0.01;                                // Increment the float value
   radio.write( &myData, sizeof(myData) );              // Send the final one back.
   radio.startListening();                              // Now, resume listening so we catch the next packets.
   Serial.print(F(" - Sent response "));
   //Serial.print(F(" : "));


  • Creating a remote control to control your Arduino project
  • Exchanging data between two Arduinos


Find other examples and tutorials in our Automatic code generator
Code Architect

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

As you found this post useful...

Follow us on social media!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?